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Embedding high-resolution touch across 
robotic hands enables adaptive human-like 
grasping
 

Zihang Zhao    1,2,6, Wanlin Li    2,6, Yuyang Li1,2,6, Tengyu Liu    2,6, Boren Li2, 
Meng Wang    2, Kai Du    1, Hangxin Liu    2 , Yixin Zhu    1,3 , Qining Wang    4, 
Kaspar Althoefer    5  & Song-Chun Zhu    1,2

Developing robotic hands that adapt to real-world dynamics remains 
a fundamental challenge in robotics and machine intelligence. Despite 
notable advances in replicating human-hand kinematics and control 
algorithms, robotic systems still struggle to match human capabilities 
in dynamic environments, primarily due to inadequate tactile feedback. 
To bridge this gap, we present F-TAC Hand, a biomimetic hand featuring 
high-resolution tactile sensing (0.1-mm spatial resolution) across 70% of 
its surface area. Through optimized hand design, we overcome traditional 
challenges in integrating high-resolution tactile sensors while preserving 
the full range of motion. The hand, powered by our generative algorithm 
that synthesizes human-like hand configurations, demonstrates robust 
grasping capabilities in dynamic real-world conditions. Extensive evaluation 
across 600 real-world trials demonstrates that this tactile-embodied system 
significantly outperforms non-tactile-informed alternatives in complex 
manipulation tasks (P < 0.0001). These results provide empirical evidence 
for the critical role of rich tactile embodiment in developing advanced 
robotic intelligence, offering promising perspectives on the relationship 
between physical sensing capabilities and intelligent behaviour.

Precise sensory–motor control in real-world scenarios is fundamental 
to machine intelligence and embodied artificial intelligence (AI)1,2.  
A hallmark challenge in this field is the control of dextrous robotic 
hands3. Despite advances in mechatronic systems and sophisticated 
finger designs that enable enhanced dexterity4, the limited availability 
of rich sensory feedback fundamentally restricts their ability to adapt 
during dynamic interactions5,6. Understanding and addressing this 
sensory limitation is crucial for deploying robotic hands in real-world 
scenarios that demand nuanced control and rapid adaptation.

The robotics community has long recognized this challenge, 
approaching it through increasingly sophisticated hardware and control 

strategies. On the hardware front, researchers have developed intricate 
mechanical designs that closely mimic human-hand kinematics7–11, 
primarily relying on proprioceptive sensing for joint-level feedback. 
These hardware advances, often combined with visual perception, have 
enabled various control paradigms: from planning-based methods 
that execute precise finger gaiting12,13 to learning-based approaches 
that develop control policies through training14–16 and recently to large 
language models that provide high-level task reasoning17. However, a 
fundamental limitation persists: without the direct sensation of local 
contacts—crucial information for both modelling and control—these 
systems fail to handle unexpected physical interactions5.

Received: 18 December 2024

Accepted: 9 May 2025

Published online: xx xx xxxx

 Check for updates

1Institute for Artificial Intelligence, Peking University, Beijing, China. 2Beijing Institute for General Artificial Intelligence, Beijing, China. 3PKU–Wuhan 
Institute for Artificial Intelligence, Wuhan, China. 4College of Engineering, Peking University, Beijing, China. 5School of Engineering and Materials Science, 
Queen Mary University of London, London, UK. 6These authors contributed equally: Zihang Zhao, Wanlin Li, Yuyang Li, Tengyu Liu.  

 e-mail: liuhx@bigai.ai; yixin.zhu@pku.edu.cn; k.althoefer@qmul.ac.uk

http://www.nature.com/natmachintell
https://doi.org/10.1038/s42256-025-01053-3
http://orcid.org/0000-0003-3215-7152
http://orcid.org/0000-0002-8538-8571
http://orcid.org/0000-0003-4006-1740
http://orcid.org/0009-0000-7709-850X
http://orcid.org/0000-0002-7505-1561
http://orcid.org/0000-0002-3003-8611
http://orcid.org/0000-0001-7024-1545
http://orcid.org/0000-0003-3484-4810
http://orcid.org/0000-0002-1141-9996
http://orcid.org/0009-0009-9458-5583
http://crossmark.crossref.org/dialog/?doi=10.1038/s42256-025-01053-3&domain=pdf
mailto:liuhx@bigai.ai
mailto:yixin.zhu@pku.edu.cn
mailto:k.althoefer@qmul.ac.uk


Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-025-01053-3

of the five fingers incorporates three DoFs, contributing to the hand’s 
total 15-DoF configuration that enables human-like dexterity. A special-
ized electronic module enables large-scale sensor reading acquisition 
while minimizing space, weight and cabling requirements (Extended 
Data Fig. 1b). The hand’s dimensions mirror those of an adult human 
hand, measuring 194 mm from wrist to middle fingertip (Fig. 2a), and 
its modular design architecture allows for easy adaptation to different 
physical dimensions while maintaining functionality.

Building upon its extensive tactile sensing coverage, F-TAC 
Hand also achieves comprehensive motion capabilities that match 
state-of-the-art dextrous hands9–11. The hand implements full mobil-
ity using just five slim cables (Extended Data Fig. 1c) with substantial 
payload capacity (Fig. 2b). Each cable controls the flexion and exten-
sion of a finger (Extended Data Fig. 1d,e), working in concert with 
stiffness-tuned springs at each joint (Fig. 2c) to replicate the coor-
dinated yet semi-independent movements characteristic of human 
hands31 (Fig. 2d). An additional degree of actuation enables thumb 
opposition, expanding the hand’s motion versatility (Extended Data 
Fig. 1e). Detailed fabrication procedures are provided in ‘Tactile sen-
sor fabrication’ and ‘F-TAC Hand fabrication’ in Methods. The hand’s 
dexterity is demonstrated through two evaluations: the Kapandji 
test23, completing all ten designated thumb-to-hand contact points 
shown in Fig. 2e, and the successful execution of all 33 human grasp 
types (Fig. 3).

The hand’s tactile sensing system utilizes the photometric stereo 
principle32,33, converting light intensity variations into surface gradi-
ent information (Fig. 4a). Contact surface geometry is reconstructed 
through a two-stage process. First, an array of encoder–decoder neural 
networks (Fig. 4b) maps physics-based relationships between surface 
gradients and intensity variations for each sensor. Next, a Poisson 
solver generates high-fidelity surface geometries, visualized as normal 
maps (Fig. 4c). The detailed sensor characteristics are available in Sup-
plementary Section 1.

The unprecedented scale of F-TAC Hand’s tactile sensing system 
required development of efficient calibration solutions. We addressed 
this through a physics-based image formation model (detailed in Sup-
plementary Sections 2 and 3) that generates synthetic readings of 
elastomer deformations during contacts (Fig. 4d). This approach 
enables efficient neural network training (Fig. 4b) and accurate sen-
sor calibration.

The integration of fine-grained tactile sensing with robust motion 
capabilities enables F-TAC Hand to effectively grasp diverse objects, 
including challenging cases such as crystal balls (Fig. 4e), while simul-
taneously capturing detailed contact information (Fig. 4f). These sen-
sory data enable accurate object pose estimation during manipulation 
(Fig. 4g). Additional demonstrations are provided in Supplementary 
Video.

Through this combination of dense tactile arrays and advanced 
motor capabilities, F-TAC Hand achieves unprecedented biomimetic 
fidelity, advancing both robotic manipulation capabilities and our 
understanding of human manual dexterity.

Powering F-TAC Hand with human-like diverse grasping
While F-TAC Hand’s high articulation enables sophisticated manipula-
tion, it presents unique challenges in grasp planning. The increased 
number of DoFs makes traditional mechanical equation-based methods 
computationally intractable34. Learning-based alternatives35, though 
avoiding complex analytical solutions, require extensive training data 
that are both costly to collect and potentially biased by human dem-
onstration preferences—a particular challenge for highly articulated 
dextrous hands.

We model the robotic grasp generation of rigid objects as sampling 
hand poses from a Gibbs distribution conditioned on object geometry. 
Each grasp is associated with an energy value derived from force clo-
sure criteria, which evaluates how well the grasp can resist external 

The solution may lie in understanding human hand control, which 
achieves remarkable precise control through a sophisticated tactile 
perception system. This biological system comprises two key elements: 
a dense array of tactile sensors embedded throughout the skin18–20 and 
specialized neural processing in the primary somatosensory cortex 
that rapidly interprets and integrates this massive sensory input20–22. 
This combination enables humans to instantly detect and respond to 
subtle contact changes during manipulation, a capability that current 
robotic systems have yet to replicate.

Drawing direct inspiration from this biological architecture, we 
present F-TAC Hand (Full-Hand Tactile-Embedded Biomimetic Hand), 
a system that bridges the sensory gap in robotic manipulation. The 
core innovation lies in its comprehensive tactile sensing capability, 
featuring high-resolution coverage (0.1-mm spatial resolution) across 
70% of the hand surface. This is achieved through the effective integra-
tion of 17 vision-based tactile sensors in six optimized configurations, 
where sensor covers serve dual purposes as both sensing elements 
and structural components. The hand maintains full human-like 
dexterity, demonstrated by its high Kapandji score23 and ability to 
perform all 33 human grasp types24. Complementing this hardware, 
we developed a generative algorithm that produces human-like hand 
configurations, creating a rich knowledge base for object interac-
tion. The integration enables closed-loop tactile-informed control 
that processes high-dimensional contact data for precise, adaptive 
manipulation.

To rigorously validate F-TAC Hand’s capabilities, we focused 
on multi-object grasping—a task that epitomizes the challenges of 
dextrous manipulation5,25. While single-object manipulation has 
been successfully addressed by one-degree-of-freedom (1-DoF) par-
allel grippers26–28, simultaneous manipulation of multiple objects 
presents two distinct challenges: it requires both precise contact 
detection across the entire hand and strategic motion adjustments 
to prevent object collisions. Through comprehensive tactile sensing, 
F-TAC Hand directly addresses these challenges. Extensive evaluation 
across 600 real-world trials demonstrates significant performance 
improvements over non-tactile alternatives (P < 0.0001), particularly 
in scenarios involving real-world execution noise and dynamic object 
interactions.

Our work advances the field through two primary contributions: a 
practical demonstration that full-hand tactile sensing can be achieved 
without compromising hand motion capabilities, and comprehen-
sive empirical validation of its benefits. By solving the technical chal-
lenges that previously restricted tactile sensing to simple grippers, 
this research enables unprecedented investigations into sophisticated 
tactile-embodied intelligence6. More broadly, our results provide con-
crete evidence for the critical role of rich sensory feedback in intelligent 
behaviour, suggesting promising directions for developing embodied 
AI systems beyond purely computational approaches29,30.

Results
F-TAC Hand hardware
F-TAC Hand advances the state of dextrous robotic hands through its 
comprehensive tactile sensing capabilities while maintaining a full 
range of motion. The hand achieves human-like tactile coverage, with 
sensing elements extending across 70% of the palmar surface at a den-
sity of 10,000 taxels (the pixels in camera CMOS) cm−2 (Fig. 1), notably 
surpassing current commercial solutions such as Shadow Hand, which 
provides only five-point feedback over less than 20% of its surface11 
(comparison with other tactile arrays is available in Supplementary 
Section 1). This extensive coverage is achieved through an array of 
vision-based tactile sensors in multiple configurations (see exploded 
view in Extended Data Fig. 1a and physical dimensions in Supplementary 
Section 1), featuring specially designed covers that align with the hand’s 
phalanges and palm to minimize mechanical redundancy while replicat-
ing the natural kinematic structure of the human hand (Fig. 2a). Each 
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forces. Lower energy values indicate better grasping capability; see 
‘Probabilistic formulation for grasp generation’ in Methods and Sup-
plementary Section 4 for details. Due to the hand’s high number of 
DoFs and the non-convex nature of the problem36, we sample grasps 
from random initializations and apply a modified Metropolis-adjusted 
Langevin algorithm to reduce energy and escape local minima, con-
verging to low-energy, high-quality grasps; see ‘Exploration algorithm 
for complex energy landscape’ in Methods for details. We validated 
the approach using a diverse test set of 23 objects, including spheres, 
cylinders, cuboids and irregular shapes (Fig. 5a). By executing the algo-
rithm from various initializations, F-TAC Hand’s biomimetic kinematics 
(Extended Data Fig. 2) and varied object geometries result in diverse 
grasping poses (Supplementary Video).

The resulting grasping poses are analysed through the Attrac-
tion–Diffusion Energy Landscape Mapping (ADELM) algorithm37 to 
visualize the complex energy landscape defined in equation (2), as 
shown in Fig. 5b–d. In this visualization, circles represent local minima 
(areas of low energy), where each local minimum contains at least one 
feasible grasp. The circle’s size indicates how many similar grasps exist 
within that local minimum. The circles are colour-coded according to 
the majority grasp type on the basis of ref. 24: power, precision and 
intermediate. The vertical connecting bars between circles represent 
energy barriers between different local minima, where shorter bars 
indicate easier transitions between grasping poses, while longer bars 
signify transitions that are more difficult to achieve. Direct compari-
sons between generated grasps and human demonstrations (Fig. 5b–d) 
in the boxes below validate the human-like nature of our solutions. This 
approach maintains its effectiveness even for challenging cases such as 
pliers and adversarial objects38 (Fig. 5e,f), with comprehensive energy 
landscapes presented in Extended Data Fig. 3.

To quantitatively assess the human-like diversity of our approach, 
we analysed 1,800 generated grasps according to the taxonomy of ref. 
24, categorizing them into 19 common grasp types (Supplementary 
Section 5). The resulting distribution (Fig. 5g) demonstrates compre-
hensive coverage across the human grasp repertoire, from frequent 
strategies such as power sphere and precision sphere to specialized 
configurations such as distal type and palmar grasps.

Further analysis using contact maps39 reveals natural cluster-
ing patterns that align with human grasp classifications. By apply-
ing dimensionality reduction through principal component analysis 
and visualization via t-distributed stochastic neighbour embedding 

(Extended Data Fig. 4), we observe distinct groupings of power and 
precision grasps, with intermediate grasps appropriately positioned 
near the boundary defined by a radial-basis-function-kernel support 
vector classifier. This distribution mirrors human grasp categoriza-
tion patterns, where intermediate grasps share characteristics of both 
primary types (computational details in Supplementary Section 6).

The demonstrated ability to generate diverse, human-like 
hand configurations provides F-TAC Hand with both optimal and 
near-optimal control strategies. This algorithmic foundation, work-
ing in concert with the low-level controller, enables enhanced dexterity 
and adaptability in real-world manipulation scenarios.

Adaptive behaviours of F-TAC Hand
The integration of advanced tactile sensing with diverse grasping strate-
gies enables F-TAC Hand to implement a closed-loop sensory–motor 
feedback mechanism, allowing real-time adaptation to environmental 
changes. The implementation details are illustrated in Extended Data 
Fig. 7 and described in ‘Context-sensitive motor controls’ in Methods.

We demonstrate F-TAC Hand’s capabilities through multi-object 
grasping5, a critical benchmark for hand dexterity that surpasses the 
limitations of 1-DoF parallel grippers. This challenging task demands 
precise contact detection and strategic adjustments to avoid colli-
sions—capabilities that remain elusive for current AI systems5. While 
recent advances13,25 show promise, managing the stochastic nature of 
real-world objects, especially those with complex geometries, remains 
challenging. F-TAC Hand overcomes these limitations through precise 
contact-point identification (Fig. 6a).

To evaluate real-world performance, we mounted F-TAC Hand on 
a Kinova Gen3 robotic arm for multi-object transport tasks (Fig. 6b). 
The goal is to grasp as many objects as possible in one go to maximize 
transportation efficiency. While optimal strategies exist under ideal 
conditions (red route in Fig. 6b), real-world variables—such as imper-
fect robot positioning and object perception—require adaptive motor 
control. The other coloured routes in Fig. 6b illustrate actual scenarios 
where F-TAC Hand encountered wrong object positions but leveraged 
its comprehensive tactile sensing capabilities (Fig. 4g) to assess situ-
ations and dynamically switch to alternative strategies that accom-
modate available space, even if theoretically suboptimal. Additional 
demonstrations of adaptive behaviours, including responses to finger 
impairments and ball size adaptation, are shown in Extended Data Fig. 5 
and Supplementary Video.

Sensing

)/area( ) ≈ 70%

Non-sensing

Area(

10,000 taxels cm−2

100% surface sensing
~230

~50 a�erents cm−2

Softball
Golf ball

Contact point
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Fig. 1 | Overview of F-TAC Hand. F-TAC Hand is a dextrous robotic hand featuring 
a high-density tactile sensing array that matches human capabilities, as 
benchmarked against physiological data from ref. 19. Detailed illustrations of the 
sensor construction and assembly process are provided in Fig. 2 and Extended 

Data Fig. 1. Similarly to its biological counterpart, it leverages sophisticated 
tactile feedback to accomplish complex manipulation tasks, such as precise 
in-hand object pose arrangement, enabling simultaneous and stable grasping of 
multiple items, a capability highlighted as challenging but crucial in ref. 5.
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Fig. 2 | Hardware of F-TAC Hand. a, The seamless integration of 17 vision-based 
sensors in six configurations, maintaining 15 DoFs—three per finger—and adult 
hand dimensions. Each sensor includes a streamlined camera module for efficient 
tactile data acquisition in confined space. PCB, printed circuit board. b, F-TAC 
Hand demonstrates its strength by holding a 2.5-kg dumbbell; each phalanx 
contributes to a total grasping force of 10.3 N. c, Schematic representation 
of a finger, with Kn, θn and F denoting joint stiffness, rotation angle and cable 

force, respectively. Offsets in rotation due to cable and joint alignment are also 
shown. d, Top-down-view comparison of F-TAC Hand and human finger flexion. 
e, Despite the numerous sensors, F-TAC Hand retains its mobility, as evidenced 
by a successful Kapandji test23, where the thumb fingertip sequentially touches 
specific points on the hand as numbered in the figure. PP, proximal phalanx;  
MP, middle phalanx; DIP, distal interphalangeal; PIP, proximal interphalangeal; 
MCP, metacarpophalangeal.
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We quantified the impact of tactile sensing through extensive 
experiments involving 60 object combinations across 600 real-world 
trials. Initial grasps were programmed from a disembodied AI per-
spective, using theoretically optimal strategies without considering 
environmental dynamics. Each combination underwent ten real-world 
trials, with tactile feedback assessing in-hand object positions and 
potential collision risks. Collision detection involves two steps: using 
tactile information to estimate the grasped object’s pose as shown in 
Fig. 4g, and then checking whether the union of the grasped object 
geometry and the next target object geometry is null. The observed 
collision rate in real-world execution (M = 0.465, s.d. = 0.306) differed 

significantly from theoretical predictions (M = 0.000, s.d. = 0.000), 
highlighting the substantial gap between simulation and reality, 
t(59) = 11.8, P = 2.1 × 10−17 (Fig. 6c).

F-TAC Hand’s adaptive capabilities become particularly evident 
when comparing tactile-informed versus non-tactile-informed control. 
Upon detecting collision risks, the system rapidly (~100 ms) switches to 
alternative strategies that might be suboptimal in theory but practical in 
reality. In scenarios with potential collisions, the non-tactile-informed 
approach inevitably fails, while the tactile-informed approach main-
tains productivity through adaptive replanning. The tactile-informed 
approach achieved perfect adaptation (M = 1.000, s.d. = 0.000) 

Large diameter Power sphere Power disc Lateral Tip pinch Inferior pincer

Medium wrap Sphere 4 finger Extension type Lateral tripod Prismatic 2 finger Tripod

Small diameter Sphere 3 finger Palmar Ventral Prismatic 3 finger Quadpod

Ring Index finger extension Adducted thumb Stick Prismatic 4 finger Precision sphere

Light tool Fixed hook Distal type Tripod variation Writing tripod Precision disc

Adduction grip Palmar pinch Parallel extension

Power Intermediate Precision

Fig. 3 | Workspace of F-TAC Hand. Empowered by its smart design, the workspace of F-TAC Hand enables it to perform all 33 human grasping types, as documented  
in ref. 24.
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compared with significantly lower success rates without tactile 
feedback (M = 0.535, s.d. = 0.306), t(59) = 11.8, P = 2.1 × 10−17 (Fig. 6d). 
Notably, in collision-free scenarios, the two approaches demonstrate 
comparable execution times, with tactile-informed collision check-
ing adding only ~1 s of processing time, indicating that tactile sensing 
provides critical robustness with minimal computational overhead 
during normal operations. The detailed method and the logic chain 
are available in ‘Context-sensitive motor controls’ in Methods.

Discussion
F-TAC Hand represents a substantial advance in robotic sen-
sory–motor integration, achieving unprecedented integration 
of comprehensive tactile sensing with human-like dexterity. Its 
high-density tactile coverage (70% of palmar surface, 10,000 tax-
els cm−2) substantially exceeds current robotic hand capabilities. 
This exceptional sensing is achieved through the effective inte-
gration of vision-based tactile sensors, physics-based calibration 
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Fig. 4 | Comprehensive tactile sensing capabilities of F-TAC Hand.  
a–d, Raw tactile sensor readings from the configuration shown in Fig. 1a (a) 
are processed by neural networks (b) to reconstruct contact site geometries 
(c), visualized as normal maps. The neural networks, trained on simulated data 
(d) generated by a physics-based image formation model, enable efficient and 
precise mapping of extensive raw data to geometric information at the contact 

interface. e,f, When grasping an object (e), F-TAC Hand captures detailed contact 
information through its advanced tactileer sensing capabilities (f). g, This rich 
tactile feedback enables F-TAC Hand to accurately perceive and interpret object 
characteristics, as demonstrated by its precise estimation of in-hand object 
poses.
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estimations of data distribution. The identical P values (2.1 × 10−17) displayed 
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methods and specialized electronics—all while maintaining full motion  
capabilities.

Recent advances in tactile sensing33,40–48 have primarily focused on 
parallel grippers. While these sensor-equipped grippers demonstrate 
enhanced capabilities in specific tasks—such as cable following26, sur-
face following27 and articulated object manipulation28—their low-DoF 
mechanical structure fundamentally limits their dexterity for complex 
manipulation.

In contrast, F-TAC Hand’s integration of comprehensive tactile 
feedback with high articulation enables more sophisticated manipu-
lation, as demonstrated by its successful multi-object grasping under 
uncertain conditions. The closed-loop sensory–motor feedback ena-
bles context-sensitive adaptations, significantly improving perfor-
mance in dynamic real-world scenarios. This combination of sensing 
and adaptability is essential for practical robotics applications requir-
ing safe and efficient environmental interaction.

The design philosophy behind F-TAC Hand emphasizes replicabil-
ity, aiming to catalyse broader research in tactile-enabled manipula-
tion. Its achievement of human-like capabilities opens possibilities in 
prosthetics, teleoperation, collaborative robotics and human–robot 
interaction. The hardware’s compact, modular architecture facilitates 
efficient data acquisition and calibration while being adaptable to 
various robotic platforms. The training-free stochastic optimization 
approach for grasp generation remains platform independent, ena-
bling rapid deployment across different hand designs (Extended Data 
Fig. 6). While our current implementation assumes known object geom-
etry, this was a deliberate scope decision to focus on tactile-informed 
adaptive control rather than geometry reconstruction. Pre-grasping 
geometry acquisition could be readily integrated using existing vision 
techniques49,50, and real-time reconstruction during manipulation 
represents a promising direction for future work. This combination 
of diverse grasping capabilities and environmental adaptability makes 
F-TAC Hand particularly suited for complex manipulation tasks.

Beyond technical achievements, our results suggest that practical 
AI requires tight integration between sensory processing and strategic 
adaptation. The demonstrated importance of comprehensive tactile 
feedback in achieving human-like dexterity aligns with cognitive and 
neuroscientific perspectives that emphasize the essential role of physi-
cal interaction in intelligence51–54.

Methods
Tactile sensor fabrication
The tactile sensor design for F-TAC Hand’s distal phalanx (Extended 
Data Fig. 1a) addresses key challenges in miniaturization and integra-
tion. A custom camera module using a single flexible flat cable for both 
power and data transmission resolves traditional cabling constraints. 
The sensor housing’s U-shaped clevis and tang structure enables the 
interconnection necessary for anthropomorphic articulation.

Contact detection relies on analysing elastomer surface deforma-
tion through reflected light intensity. To achieve uniform illumination 
in the confined phalanx space, we developed a specialized Lambertian 
membrane. This membrane combines an air-brushed spherical alu-
minium film (mill-resistant matte oil with 1-μm spherical aluminium 
powder) with a clear silicone base (Smooth-On Solaris parts A&B, 1:1 
ratio). The illumination system comprises surface-mounted Lumileds 
LUXEON 2835 Color Line light-emitting diodes (red, green, blue and 
white) arranged around an acrylic support, enhanced by light-diffuser 
films. An OV2640 image sensor with a 160° wide-angle lens provides 
colour-compatible imaging, while 7-mm × 7-mm × 4-mm heat sinks 
ensure thermal stability.

The complete sensing system architecture (Extended Data Fig. 1b) 
integrates these components with a custom control module. The mod-
ule interfaces with cameras through digital video ports, maintaining 
240-px × 240-px image buffers. Spatial resolution of 0.1 mm per pixel 
is achieved, verified through known-object calibration. An expanded 

Serial Peripheral Interface bus coordinates sequential camera captures, 
with USB connectivity for PC data transmission and U2D2 protocol for 
servo control.

The tactile components are integrated into anatomically scaled 
phalanx covers matching adult hand dimensions. This modular, 
single-cable design overcomes traditional challenges in implement-
ing high-resolution, extensive tactile sensing in robotic hands.

F-TAC Hand fabrication
F-TAC Hand’s structure (Extended Data Fig. 1c) integrates 17 compact 
vision-based sensors in six configurations to achieve human-hand 
proportions. The four fingers—index, middle, ring and little—share a 
common architecture (Extended Data Fig. 1d) with three serial revolute 
joints: metacarpophalangeal, proximal interphalangeal and distal inter-
phalangeal, each offering 0–90° range. These joints utilize aluminium 
shafts supported by deep-groove ball bearings, with screw-bushing 
fixation and torsion springs maintaining a 0° rest position.

The thumb design (Extended Data Fig. 1e) features an additional 
carpometacarpal joint DoF, enabling 90° motion range with a 45° offset 
from its proximal interphalangeal joint axis. The two-part palm base 
facilitates assembly and houses compact tactile sensors, with the upper 
region incorporating dual cameras in a single sensor for enhanced 
perception (Extended Data Fig. 1c).

Finger actuation employs a cable-driven mechanism, with a single 
cable routed along both sides of each finger’s phalanxes, converg-
ing at the palm base. Torsion springs facilitate a return to rest posi-
tion upon cable relaxation. Each finger is powered by a DYNAMIXEL 
XC330X-T288-T servo motor. For experimental validation, F-TAC Hand 
mounts onto a 7-DoF Kinova Gen3 manipulator.

Probabilistic formulation for grasp generation
The generation of grasp configurations for multifingered robotic hands 
presents notable challenges, particularly when maximizing dextrous 
capabilities. Instead of relying on data-driven approaches that demand 
extensive annotated datasets, we formulate grasp generation as a Gibbs 
distribution sampling problem:

P(H|O) = 1
Z exp

−E(H,O), (1)

where H = (T, q) represents the hand’s pose and joint configurations, 
O denotes the target object, E(H, O) defines the grasping energy func-
tion and Z is the intractable normalizing constant. The hand’s surface 
geometry S(H) is computed through forward kinematics.

This energy function combines two weighted components—grasp 
quality energy Egrasp and physical plausibility energy Ephy:

E(H,O) = λgraspEgrasp(H,O) + λphyEphy(H,O). (2)

To assess the quality of the grasp, we use force closure criteria to define 
Egrasp(H, O):

Egrasp(H,O) = min
x⊂S(H)

FC(x,O), (3)

where x = {xi} represents frictional contact points on S(H), and FC(x, O) 
assesses force closure formation on the object.

Ephy enforces physical constraints by penalizing hand–object pen-
etration and joint limit violations:

Ephy(H,O) = ∑
v∈S(H)

max (−d SDF
O (v),0)

+
J
∑
j=1
[max (qj − qmaxj ,0) +max (qminj − qj,0)] ,

(4)

where dSDFO (v)  defines the signed distance function from point v to 
object O, and [qminj ,qmaxj ] specifies joint limits for each of the J joints.
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This probabilistic formulation enables scalable generation of 
diverse, effective grasp configurations.

Exploration algorithm for complex energy landscape
The nonlinearity of hand kinematics and contact-point selection cre-
ates a complex energy landscape for E, making naive gradient-based 
sampling prone to suboptimal local minima. We address this through 
a modified Metropolis-adjusted Langevin algorithm that alter-
nates between contact-point sampling and gradient-based pose 
optimization.

The algorithm initializes with random hand pose H and contact 
points x ⊂ S(H). Through L iterations, it updates H and x to maximize 
P(H, O). Each iteration stochastically chooses between updating 
the hand pose via Langevin dynamics or replacing a contact point 
with a uniform sample from the hand surface. Updates undergo 
Metropolis–Hastings acceptance criteria, favouring lower-energy 
configurations.

This combination of stochastic updates enables escape from 
local minima, while Metropolis acceptance guides sampling toward 
low-energy configurations. An algorithm efficiency analysis is detailed 
in Supplementary Section 7.

Context-sensitive motor controls
Extended Data Fig. 7 demonstrates adaptive control in a four-ball 
transport scenario, where ball repositories are weighted and com-
bined by volume. Initially, at t1, F-TAC Hand plans to grasp a golf ball 
and softball using its little finger and remaining digits. To illustrate 
the control mechanism, we introduce a manual perturbation during 
golf-ball acquisition, causing F-TAC Hand to secure the golf ball with 
its index finger at t2. The occupation of the index finger invalidates 
the planned softball grasp (light grey in Extended Data Fig. 7), neces-
sitating a strategy revision. Through comprehensive tactile sensing, 
F-TAC Hand detects the situation and adapts by executing an alterna-
tive approach—grasping a yoga ball using its thumb, index and mid-
dle fingers. While this solution was initially considered suboptimal, 
it demonstrates the system’s capacity for real-time adaptation to 
unexpected conditions.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from 
Zenodo55 (https://doi.org/10.5281/zenodo.15193164).

Code availability
The code used for performing grasp synthesis and training calibra-
tion models is available from Zenodo55 (https://doi.org/10.5281/
zenodo.15193164).
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Extended Data Fig. 1 | Mechatronic design of the F-TAC Hand. a, Exploded view of a vision-based tactile sensor as a distal phalanx. b, Electrical components 
and system scheme. c, Schematic of the F-TAC Hand assembly and cable-driven mechanism. d, Finger model with mechanical components. e, Thumb model with 
mechanical components.

http://www.nature.com/natmachintell


Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-025-01053-3

Extended Data Fig. 2 | Kinematic model of the F-TAC Hand. We adopt the 
modified Denavit-Hartenberg (DH) norm to establish the coordinates for the 
palm base and finger phalanxes. The transformations between these coordinates 

are represented in DH tables. In these tables, ai−1 is the distance along Xi−1 between 
Zi−1 and Zi, αi−1 is the angle about Xi−1 between Zi−1 and Zi, di is the distance along Zi 
between Xi−1 and Xi, and θi is the angle about Xi between Xi−1 and Xi.
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Extended Data Fig. 3 | Multi-object landscape. We examine the grasp 
relationships among six example objects (pawn, vase, multimeter, board eraser, 
coffee bottle, and Coke can) using a large disconnectivity graph. This landscape 
comprises 79 basins, each categorized into one of three grasp types (Power, 

Intermediate, Precision) based on the majority of grasps it contains. Within each 
basin, similar grasp strategies are observed across different objects, as illustrated 
in (a)-(f).
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Extended Data Fig. 4 | Extended results of the grasp generation algorithm. Visualization of grasp samples with t-SNE reveals that most Power grasps and Precision 
grasps are clustered separately, with Intermediate grasps lying in between. This map indicates a strong alignment between the generated results and human definitions 
of grasp types.
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Extended Data Fig. 5 | More adaptive behaviors by the F-TAC Hand. F-TAC Hand’s stable grasping with some fingers disabled (shown in light gray), mirroring human 
compensation for finger injuries.
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Extended Data Fig. 6 | Extension to other hand topologies. Our algorithm generalizes to various hand types without requiring specific mechanical structures or 
training samples. a, eight objects are used for testing with four different hands: b, two-finger EZGripeer56, c, Barrett 3-fingered Gripper57, d four-finger Allegro Hand58, 
and e, anthropomorphic Shadow Hand11.
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Extended Data Fig. 7 | Illustration of methods to realize human-like 
dexterous grasping. F-TAC Hand employs a two-stage strategy for multi-object 
transportation. It adjusts for in-hand position variations due to perturbations, 

dynamically adapting its second-stage strategy to prevent collisions and 
maximize efficiency (Light gray in the grasping repository indicates that 
grasping strategies are rendered infeasible at the current time).
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